z-logo
Premium
Development of Chemo‐ and Enantioselective Palladium‐Catalyzed Decarboxylative Asymmetric Allylic Alkylation of α‐Nitroesters
Author(s) -
Trost Barry M.,
Schultz Johnathan E.,
Bai Yu
Publication year - 2019
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201904034
Subject(s) - tsuji–trost reaction , enantioselective synthesis , chemistry , alkylation , imine , nucleophile , combinatorial chemistry , catalysis , nitro , palladium , allylic rearrangement , ligand (biochemistry) , organic chemistry , biochemistry , alkyl , receptor
We describe the development of a Pd‐catalyzed decarboxylative asymmetric allylic alkylation of α‐nitro allyl esters to afford acyclic tetrasubstituted nitroalkanes. Optimization of the reaction parameters revealed unique ligand and solvent combinations crucial for achieving chemo‐ and enantioselective C ‐alkylation of electronically challenging benzylic nitronates and sterically encumbered 2‐allyl esters. Substrates were efficiently accessed in a combinatorial fashion by a cross‐Claisen/ α‐arylation sequence. The method provides functional group orthogonality that complements nucleophilic imine allylation strategies for α‐tertiary amine synthesis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here