Premium
Cobalt‐Catalyzed Enantioselective Hydroboration/Cyclization of 1,7‐Enynes: Asymmetric Synthesis of Chiral Quinolinones Containing Quaternary Stereogenic Centers
Author(s) -
Wu Caizhi,
Liao Jiayu,
Ge Shaozhong
Publication year - 2019
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201903377
Subject(s) - stereocenter , enantioselective synthesis , hydroboration , chemistry , quinoline , cobalt , catalysis , aniline , combinatorial chemistry , stereochemistry , organic chemistry
An asymmetric cobalt‐catalyzed hydroboration/cyclization of 1,7‐enynes to synthesize chiral six‐membered N‐heterocyclic compounds was developed. A variety of aniline‐tethered 1,7‐enynes react with pinacolborane to afford the corresponding chiral boryl‐functionalized quinoline derivatives in high yields with high enantioselectivity. This cobalt‐catalyzed asymmetric cyclization of 1,7‐enyens provides a general approach to access a series of chiral quinoline derivatives containing quaternary stereocenters.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom