Premium
Fire‐Safe Polyesters Enabled by End‐Group Capturing Chemistry
Author(s) -
Liu BoWen,
Chen Li,
Guo DeMing,
Liu XiaoFeng,
Lei YuFei,
Ding XiaoMin,
Wang YuZhong
Publication year - 2019
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201900356
Subject(s) - polyester , moiety , flammability , polymer , thermal decomposition , decomposition , chemistry , copolymer , flammable liquid , polymer chemistry , organic chemistry , polymer science , materials science , chemical engineering , engineering
Upon heating, polyesters decompose to small molecules and release flammable volatiles and toxic gases, primarily through chain scission of their ester linkages, and therefore exhibit poor fire‐safety properties, thus restricting their applications. Reported herein is an end‐group‐capturing effect of (bis)oxazoline groups, generated from the thermal rearrangement of the N ‐(2‐hydroxyphenyl)phthalimide (HPI) moiety which was incorporated into the polyester chain by copolymerization. These copolyesters, as a result, exhibit high efficiency in retarding decomposition by capturing the decomposed products, particularly for the carbonyl‐terminated fragments, thus increasing the fire‐safety properties, such as self‐extinguishing, anti‐dripping, and inhibiting heat release and smoke production. The successful application of this method in both semi‐aromatic and aliphatic polyesters provide promising perspectives to designing versatile fire‐safe polymers.