z-logo
Premium
Intermolecular Allylic C−H Etherification of Internal Olefins
Author(s) -
Nelson Taylor A. F.,
Blakey Simon B.
Publication year - 2018
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201809863
Subject(s) - allylic rearrangement , surface modification , chemistry , intermolecular force , oxidative phosphorylation , catalysis , organic chemistry , combinatorial chemistry , molecule , biochemistry
Herein we report on the development of an oxidative allylic C−H etherification reaction, utilizing internal olefins and alcohols as simple precursors. Key advances include the use of RhCp* complexes to promote the allylic C−H functionalization of internal olefins and the compatibility of the oxidative conditions with oxidatively sensitive alcohols, enabling the direct etherification reaction. Preliminary mechanistic studies, consistent with C−H functionalization as the rate determining step, are presented.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom