Premium
Highly Emissive Self‐Trapped Excitons in Fully Inorganic Zero‐Dimensional Tin Halides
Author(s) -
Benin Bogdan M.,
Dirin Dmitry N.,
Morad Viktoriia,
Wörle Michael,
Yakunin Sergii,
Rainò Gabriele,
Nazarenko Olga,
Fischer Markus,
Infante Ivan,
Kovalenko Maksym V.
Publication year - 2018
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201806452
Subject(s) - exciton , photoluminescence , quantum yield , perovskite (structure) , stokes shift , halide , luminescence , semiconductor , tin , spontaneous emission , quantum well , materials science , charge carrier , yield (engineering) , chemistry , chemical physics , molecular physics , condensed matter physics , optoelectronics , physics , crystallography , optics , fluorescence , inorganic chemistry , metallurgy , laser
The spatial localization of charge carriers to promote the formation of bound excitons and concomitantly enhance radiative recombination has long been a goal for luminescent semiconductors. Zero‐dimensional materials structurally impose carrier localization and result in the formation of localized Frenkel excitons. Now the fully inorganic, perovskite‐derived zero‐dimensional Sn II material Cs 4 SnBr 6 is presented that exhibits room‐temperature broad‐band photoluminescence centered at 540 nm with a quantum yield (QY) of 15±5 %. A series of analogous compositions following the general formula Cs 4− x A x Sn(Br 1− y I y ) 6 (A=Rb, K; x ≤1, y ≤1) can be prepared. The emission of these materials ranges from 500 nm to 620 nm with the possibility to compositionally tune the Stokes shift and the self‐trapped exciton emission bands.