Premium
Transition‐Metal‐Mediated and ‐Catalyzed C−F Bond Activation by Fluorine Elimination
Author(s) -
Fujita Takeshi,
Fuchibe Kohei,
Ichikawa Junji
Publication year - 2019
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201805292
Subject(s) - fluorine , chemistry , catalysis , bond cleavage , transition metal , heteroatom , reductive elimination , oxidative addition , carbon fibers , organometallic chemistry , elimination reaction , metal , photochemistry , combinatorial chemistry , organic chemistry , ring (chemistry) , materials science , composite number , composite material
The activation of carbon–fluorine (C−F) bonds is an important topic in synthetic organic chemistry. Metal‐mediated and ‐catalyzed elimination of β‐ or α‐fluorine proceeds under milder conditions than oxidative addition to C−F bonds. The β‐ or α‐fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations through these elimination processes (C−F bond cleavage), which are typically preceded by carbon–carbon (or carbon–heteroatom) bond formation, have been increasingly developed in the past five years as C−F bond activation methods. In this Minireview, we summarize the applications of transition‐metal‐mediated and ‐catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective with early studies and from a systematic perspective with recent studies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom