Premium
Metal‐ and Reagent‐Free Dehydrogenative Formal Benzyl–Aryl Cross‐Coupling by Anodic Activation in 1,1,1,3,3,3‐Hexafluoropropan‐2‐ol
Author(s) -
Imada Yasushi,
Röckl Johannes L.,
Wiebe Anton,
Gieshoff Tile,
Schollmeyer Dieter,
Chiba Kazuhiro,
Franke Robert,
Waldvogel Siegfried R.
Publication year - 2018
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201804997
Subject(s) - nucleophile , reagent , aryl , chemistry , combinatorial chemistry , formal synthesis , electrochemistry , metal , organic chemistry , catalysis , electrode , alkyl
A selective dehydrogenative electrochemical functionalization of benzylic positions that employs 1,1,1,3,3,3‐hexafluoropropan‐2‐ol (HFIP) has been developed. The electrogenerated products are versatile intermediates for subsequent functionalizations as they act as masked benzylic cations that can be easily activated. Herein, we report a sustainable, scalable, and reagent‐ and metal‐free dehydrogenative formal benzyl–aryl cross‐coupling. Liberation of the benzylic cation was accomplished through the use of acid. Valuable diarylmethanes are accessible in the presence of aromatic nucleophiles. The direct application of electricity enables a safe and environmentally benign chemical transformation as oxidizers are replaced by electrons. A broad variety of different substrates and nucleophiles can be employed.