Premium
Microtubing‐Reactor‐Assisted Aliphatic C−H Functionalization with HCl as a Hydrogen‐Atom‐Transfer Catalyst Precursor in Conjunction with an Organic Photoredox Catalyst
Author(s) -
Deng HongPing,
Zhou Quan,
Wu Jie
Publication year - 2018
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201804844
Subject(s) - catalysis , surface modification , hydrogen atom , hydrogen , chemistry , conjunction (astronomy) , photochemistry , photoredox catalysis , organic chemistry , photocatalysis , physics , alkyl , astronomy
Chlorine radical, which is classically generated by the homolysis of Cl 2 under UV irradiation, can abstract a hydrogen atom from an unactivated C(sp 3 )−H bond. We herein demonstrate the use of HCl as an effective hydrogen‐atom‐transfer catalyst precursor activated by an organic acridinium photoredox catalyst under visible‐light irradiation for C−H alkylation and allylation. The key to success relied on the utilization of microtubing reactors to maintain the volatile HCl catalyst. This photomediated chlorine‐based C−H activation protocol is effective for a variety of unactivated C(sp 3 )−H bond patterns, even with primary C(sp 3 )−H bonds, as in ethane. The merit of this strategy is illustrated by rapid access to several pharmaceutical drugs from abundant unfunctionalized alkane feedstocks.