Premium
A Nanohelicoidal Nematic Liquid Crystal Formed by a Non‐Linear Duplexed Hexamer
Author(s) -
Mandle Richard J.,
Goodby John W.
Publication year - 2018
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201802881
Subject(s) - liquid crystal , mesogen , random hexamer , phase (matter) , twist , materials science , helix (gastropod) , crystallography , biaxial nematic , chemical physics , soft matter , condensed matter physics , chemistry , liquid crystalline , organic chemistry , physics , geometry , colloid , optoelectronics , mathematics , ecology , snail , biology
The twist‐bend modulated nematic liquid‐crystal phase exhibits formation of a nanometre‐scale helical pitch in a fluid and spontaneous breaking of mirror symmetry, leading to a quasi‐fluid state composed of chiral domains despite being composed of achiral materials. This phase was only observed for materials with two or more mesogenic units, the manner of attachment between which is always linear. Non‐linear oligomers with a H‐shaped hexamesogen are now found to exhibit both nematic and twist‐bend modulated nematic phases. This shatters the assumption that a linear sequence of mesogenic units is a prerequisite for this phase, and points to this state of matter being exhibited by a wider range of self‐assembling structures than was previously envisaged. These results support the double helix model of the TB phase as opposed to the simple heliconical model. This new class of materials could act as low‐molecular‐weight surrogates for cross‐linked liquid‐crystalline elastomers.