Premium
The Effect of Dispersion on the Structure of Diphenyl Ether Aggregates
Author(s) -
Dietrich Fabian,
Bernhard Dominic,
Fatima Mariyam,
Pérez Cristóbal,
Schnell Melanie,
Gerhards Markus
Publication year - 2018
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201801842
Subject(s) - dispersion (optics) , solvent , ether , diphenyl ether , chemistry , computational chemistry , solvent effects , chemical physics , organic chemistry , physics , optics
Dispersion interactions can play an important role in understanding unusual binding behaviors. This is illustrated by a systematic study of the structural preferences of diphenyl ether (DPE)–alcohol aggregates, for which OH⋅⋅⋅O‐bound or OH⋅⋅⋅π‐bound isomers can be formed. The investigation was performed through a multi‐spectroscopic approach including IR/UV and microwave methods, combined with a detailed theoretical analysis. The resulting solvent‐size‐dependent trend for the structural preference turns out to be counter‐intuitive: the hydrogen‐bonded OH⋅⋅⋅O structures become more stable for larger alcohols, which are expected to be stronger dispersion energy donors and thus should prefer an OH⋅⋅⋅π arrangement. Dispersion interactions in combination with the twisting of the ether upon solvent aggregation are key for understanding this preference.