Premium
A Strategy for Specific Fluorescence Imaging of Monoamine Oxidase A in Living Cells
Author(s) -
Wu Xiaofeng,
Shi Wen,
Li Xiaohua,
Ma Huimin
Publication year - 2017
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201708428
Subject(s) - monoamine oxidase , monoamine oxidase a , moiety , monoamine oxidase b , fluorescence , gene isoform , chemistry , enzyme , biochemistry , propylamine , fluorescence lifetime imaging microscopy , western blot , stereochemistry , gene , amine gas treating , organic chemistry , physics , quantum mechanics
Monoamine oxidase (MAO) has two isoforms, MAO‐A and MAO‐B, which show different functions, and thus selective fluorescence imaging is important for biological studies. Currently, however, specific detection of MAO‐A remains a great challenge. Herein, we report a new strategy for specific imaging of MAO‐A through the design of fluorogenic probes combining the characteristic structure of an inhibitor of the target enzyme along with propylamine as a recognition moiety. The high specificity of our representative probe is demonstrated by imaging MAO‐A in different live cells such as SH‐SY5Y (high levels of MAO‐A) and HepG2 (high levels of MAO‐B), and further validated by western blot analyses. The superior specificity of the probe may enable the accurate detection of MAO‐A in complex biosystems. Importantly, the use of the characteristic structure of an inhibitor, as demonstrated in this work, may serve as a general strategy to design specific recognition moieties for fluorogenic probes for enzymes.