Premium
Structural Snapshots of α‐1,3‐Galactosyltransferase with Native Substrates: Insight into the Catalytic Mechanism of Retaining Glycosyltransferases
Author(s) -
AlbesaJové David,
SainzPolo M. Ángela,
Marina Alberto,
Guerin Marcelo E.
Publication year - 2017
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201707922
Subject(s) - oxocarbenium , galactosyltransferase , glycosyltransferase , chemistry , stereochemistry , glycosidic bond , nucleophile , active site , glycosyl , residue (chemistry) , sn2 reaction , anomer , glycosyl donor , moiety , enzyme , catalysis , biochemistry
Glycosyltransferases (GTs) are a key family of enzymes that catalyze the synthesis of glycosidic bonds in all living organisms. The reaction involves the transfer of a glycosyl moiety and can proceed with retention or inversion of the anomeric configuration. To date, the catalytic mechanism of retaining GTs is a topic of great controversy, particularly for those enzymes containing a putative nucleophilic residue in the active site, for which the occurrence of a double‐displacement mechanism has been suggested. We report native ternary complexes of the retaining glycosyltransferase α‐1,3‐galactosyltransferase (α3GalT) from Bos taurus , which contains such a nucleophile in the active site, in a productive mode for catalysis in the presence of its sugar donor UDP‐Gal, the acceptor substrate lactose, and the divalent cation cofactor. This new experimental evidence supports the occurrence of a front‐side substrate‐assisted S N i‐type reaction for α3GalT, and suggests a conserved common catalytic mechanism among retaining GTs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom