Premium
Gate‐Voltage Control of Borophene Structure Formation
Author(s) -
Zhang Zhuhua,
Shirodkar Sharmila N.,
Yang Yang,
Yakobson Boris I.
Publication year - 2017
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201705459
Subject(s) - borophene , boron , doping , materials science , chemical physics , atomic orbital , lattice (music) , electron , nanotechnology , condensed matter physics , chemistry , optoelectronics , physics , graphene , organic chemistry , quantum mechanics , acoustics
Boron nanostructures are easily charged but how charge carriers affect their structural stability is unknown. We combined cluster expansion methods with first‐principles calculations to analyze the dependence of the preferred structure of two‐dimensional (2D) boron, or “borophene”, on charge doping controlled by a gate voltage. At a reasonable doping level of 3.12×10 14 cm −2 , the hollow hexagon concentration in the ground state of 2D boron increases to 1/7 from 1/8 in its charge‐neutral state. The numerical result for the dependence of hollow hexagon concentration on the doping level is well described by an analytical method based on an electron‐counting rule. Aside from in‐plane electronic bonding, the hybridization among out‐of‐plane boron orbitals is crucial for determining the relative stability of different sheets at a given doping level. Our results offer new insight into the stability mechanism of 2D boron and open new ways for the control of the lattice structure during formation.