Premium
Formation of a Tunneling Product in the Photorearrangement of o ‐Nitrobenzaldehyde
Author(s) -
Gerbig Dennis,
Schreiner Peter R.
Publication year - 2017
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201705140
Subject(s) - ketene , chemistry , quantum tunnelling , reactivity (psychology) , matrix isolation , photochemistry , computational chemistry , molecule , medicinal chemistry , organic chemistry , materials science , optoelectronics , medicine , alternative medicine , pathology
The photochemical rearrangement of o ‐nitrobenzaldehyde to o ‐nitrosobenzoic acid, first reported in 1901, has been shown to proceed via a distinct ketene intermediate. In the course of matrix isolation experiments in various host materials at temperatures as low as 3 K, the ketene was re‐investigated in its electronic and vibrational ground states. It was shown that hitherto unreported H‐tunneling dominates its reactivity, with half‐lives of a few minutes. Unexpectedly, the tunneling product is different from o ‐nitrosobenzoic acid formed in the photoprocess: Once prepared by irradiation, the ketene spontaneously rearranges to an isoxazolone via an intriguing mechanism initiated by H‐tunneling. CCSD(T)/cc‐pVTZ computations reveal that this isoxazolone is neither thermodynamically nor kinetically favored under the experimental conditions, and that formation of this unique tunneling product constitutes a remarkable and new example of tunneling control.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom