z-logo
Premium
Carbon‐Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene
Author(s) -
Guo Fangsong,
Yang Pengju,
Pan Zhiming,
Cao XuNing,
Xie Zailai,
Wang Xinchen
Publication year - 2017
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201703789
Subject(s) - dehydrogenation , ethylbenzene , catalysis , styrene , materials science , selectivity , graphene , carbon fibers , covalent bond , chemical engineering , chemistry , inorganic chemistry , nanotechnology , organic chemistry , composite number , polymer , copolymer , composite material , engineering
Carbon‐based catalysts have demonstrated great potential for the aerobic oxidative dehydrogenation reaction (ODH). However, its widespread application is retarded by the unavoidable deactivation owing to the appearance of coking or combustion under ODH conditions. The synthesis and characterization of porous structure of BCN nanosheets as well as their application as a novel catalyst for ODH is reported. Such BCN nanosheets consist of hybridized, randomly distributed domains of h‐BN and C phases, where C, B, and N were confirmed to covalent bond in the graphene‐like layers. Our studies reveal that BCN exhibits both high activity and selectivity in oxidative dehydrogenation of ethylbenzene to styrene, as well as excellent oxidation resistance. The discovery of such a simple chemical process to synthesize highly active BCN allows the possibility of carbocatalysis to be explored.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here