Premium
Lattice‐Matched Epitaxial Growth of Organic Heterostructures for Integrated Optoelectronic Application
Author(s) -
Zhang Yi,
Liao Qing,
Wang Xinguo,
Yao Jiannian,
Fu Hongbing
Publication year - 2017
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201700447
Subject(s) - epitaxy , heterojunction , optoelectronics , materials science , lattice (music) , condensed matter physics , physics , nanotechnology , acoustics , layer (electronics)
Development of nanowire photonics requires integration of different nanowire components into highly ordered functional heterostructures. Herein, we report a sequential self‐assembly of binary molecular components into branched nanowire heterostructures (BNHs) via lattice‐matched epitaxial growth, in which the microribbon backbone of 2,5‐Bis(5‐tert‐butyl‐2‐benzoxazolyl)thiophene (BBOT) functions as blue‐emitting microlaser source to pump the nanowire branches of BODIPY. By constructing Au electrodes on both branch sides and measuring the photocurrent in them, we successfully realize the integration of an organic laser and a power meter in a single device. This work provides a new insight into the integration of 1D organic nanostructures into BNHs for realizing organic multifunctional photonic devices.