Premium
Boosting Visible‐Light‐Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System
Author(s) -
Indra Arindam,
Acharjya Amitava,
Menezes Prashanth W.,
Merschjann Christoph,
Hollmann Dirk,
Schwarze Michael,
Aktas Mesut,
Friedrich Aleksej,
Lochbrunner Stefan,
Thomas Arne,
Driess Matthias
Publication year - 2017
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201611605
Subject(s) - photocatalysis , phosphide , materials science , carbon nitride , photoluminescence , visible spectrum , nickel , catalysis , electron paramagnetic resonance , graphitic carbon nitride , hydrogen production , photochemistry , mesoporous material , chemical engineering , optoelectronics , chemistry , metallurgy , nuclear magnetic resonance , organic chemistry , physics , engineering
Abstract Solar light harvesting by photocatalytic H 2 evolution from water could solve the problem of greenhouse gas emission from fossil fuels with alternative clean energy. However, the development of more efficient and robust catalytic systems remains a great challenge for the technological use on a large scale. Here we report the synthesis of a sol–gel prepared mesoporous graphitic carbon nitride (sg‐CN) combined with nickel phosphide (Ni 2 P) which acts as a superior co‐catalyst for efficient photocatalytic H 2 evolution by visible light. This integrated system shows a much higher catalytic activity than the physical mixture of Ni 2 P and sg‐CN or metallic nickel on sg‐CN under similar conditions. Time‐resolved photoluminescence and electron paramagnetic resonance (EPR) spectroscopic studies revealed that the enhanced carrier transfer at the Ni 2 P–sg‐CN heterojunction is the prime source for improved activity.