z-logo
Premium
Electron Cryo‐microscopy as a Tool for Structure‐Based Drug Development
Author(s) -
Merino Felipe,
Raunser Stefan
Publication year - 2017
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201608432
Subject(s) - macromolecule , resolution (logic) , nanotechnology , cryo electron microscopy , chemistry , macromolecular substances , materials science , computer science , biochemistry , artificial intelligence
For decades, X‐ray crystallography and NMR have been the most important techniques for studying the atomic structure of macromolecules. However, as a result of size, instability, low yield, and other factors, many macromolecules are difficult to crystallize or unsuitable for NMR studies. Electron cryo‐microscopy (cryo‐EM) does not depend on crystals and has therefore been the method of choice for many macromolecular complexes that cannot be crystallized, but atomic resolution has mostly been beyond its reach. A new generation of detectors that are capable of sensing directly the incident electrons has recently revolutionized the field, with structures of macromolecules now routinely being solved to near‐atomic resolution. In this review, we summarize some of the most recent examples of high‐resolution cryo‐EM structures. We put particular emphasis on proteins with pharmacological relevance that have traditionally been inaccessible to crystallography. Furthermore, we discuss examples where interactions with small molecules have been fully characterized at atomic resolution. Finally, we stress the current limits of cryo‐EM, and methodological issues related to its usage as a tool for drug development.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here