z-logo
Premium
Alternating Sequence Control for Carboxylic Acid and Hydroxy Pendant Groups by Controlled Radical Cyclopolymerization of a Divinyl Monomer Carrying a Cleavable Spacer
Author(s) -
Ouchi Makoto,
Nakano Marina,
Nakanishi Tomoya,
Sawamoto Mitsuo
Publication year - 2016
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201607169
Subject(s) - polymer chemistry , monomer , copolymer , vinyl ether , acrylate , chemistry , methacrylate , carboxylic acid , methacrylic acid , polymerization , vinyl polymer , radical polymerization , organic chemistry , polymer
By utilizing features of the hemiacetal ester (HAE) bond: easy formation from vinyl ether and carboxylic acid and easy cleavage into different functional groups (‐COOH and ‐OH), we achieved control of the alternating sequence of two functional pendant groups of a vinyl copolymer. Methacrylate‐ and acrylate‐based vinyl groups were connected through HAE bonds to prepare a cleavable divinyl monomer, which was cyclo‐polymerized under optimized conditions in a ruthenium‐catalyzed living radical polymerization. Subsequent cleavage of the HAE bonds in the resultant cyclo‐pendant led to a copolymer consisting of alternating methacrylic acid and 2‐hydroxyethyl acrylate units as analyzed by 13 C NMR spectroscopy. The alternating sequence of ‐COOH and ‐OH pendants specifically provided a lower critical solution temperature (LCST) in an ether solvent, which was not observed with the random copolymer of same composition ratio.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here