z-logo
Premium
Remarkable Improvement in the Mechanical Properties and CO 2 Uptake of MOFs Brought About by Covalent Linking to Graphene
Author(s) -
Kumar Ram,
Raut Devaraj,
Ramamurty Upadrasta,
Rao C. N. R.
Publication year - 2016
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201603320
Subject(s) - graphene , covalent bond , adsorption , materials science , porosity , mechanical strength , chemical engineering , benzene , metal organic framework , composite material , covalent organic framework , nanotechnology , chemistry , organic chemistry , engineering
Metal–organic frameworks (MOFs) are exceptional as gas adsorbents but their mechanical properties are poor. We present a successful strategy to improve the mechanical properties along with gas adsorption characteristics, wherein graphene (Gr) is covalently bonded with M/DOBDC (M=Mg 2+ , Ni 2+ , or Co 2+ , DOBDC=2,5‐dioxido‐1,4‐benzene dicarboxylate) MOFs. The surface area of the graphene–MOF composites increases up to 200–300 m 2  g −1 whereas the CO 2 uptake increases by ca. 3–5 wt % at 0.15 atm and by 6–10 wt % at 1 atm. What is significant is that the composites exhibit improved mechanical properties. In the case of Mg/DOBDC, a three‐fold increase in both the elastic modulus and hardness with 5 wt % graphene reinforcement is observed. Improvement in both the mechanical properties and gas adsorption characteristics of porous MOFs on linking them to graphene is a novel observation and suggests a new avenue for the design and synthesis of porous materials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom