z-logo
Premium
Rapid, On‐Command Debonding of Stimuli‐Responsive Cross‐Linked Adhesives by Continuous, Sequential Quinone Methide Elimination Reactions
Author(s) -
Kim Hyungwoo,
Mohapatra Hemakesh,
Phillips Scott T.
Publication year - 2015
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201506511
Subject(s) - depolymerization , adhesive , materials science , ether , polymer chemistry , quinone , quinone methide , composite material , chemistry , organic chemistry , layer (electronics)
Adhesives that selectively debond from a surface by stimuli‐induced head‐to‐tail continuous depolymerization of poly(benzyl ether) macro‐cross‐linkers within a poly(norbornene) matrix are described. Continuous head‐to‐tail depolymerization provides faster rates of response than can be achieved using a small‐molecule cross‐linker, as well as responses to lower stimulus concentrations. Shear‐stress values for glass held together by the adhesive reach 0.51±0.10 MPa, whereas signal‐induced depolymerization via quinone methide intermediates reduces the shear stress values to 0.05±0.02 MPa. Changing the length of the macro‐cross‐linkers alters the time required for debonding, and thus enables the programmed sequential release of specific layers in a glass composite material.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom