z-logo
Premium
Phosphothreonine as a Catalytic Residue in Peptide‐Mediated Asymmetric Transfer Hydrogenations of 8‐Aminoquinolines
Author(s) -
Shugrue Christopher R.,
Miller Scott J.
Publication year - 2015
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201505898
Subject(s) - catalysis , phosphoric acid , residue (chemistry) , chemistry , hydrogen bond , enantioselective synthesis , peptide , organocatalysis , combinatorial chemistry , amino acid residue , stereochemistry , organic chemistry , peptide sequence , biochemistry , molecule , gene
Phosphothreonine (pThr) was found to constitute a new class of chiral phosphoric acid (CPA) catalyst upon insertion into peptides. To demonstrate the potential of these phosphopeptides as asymmetric catalysts, enantioselective transfer hydrogenations of a previously underexplored substrate class for CPA‐catalyzed reductions were carried out. pThr‐containing peptides lead to the observation of enantioselectivities of up to 94:6 e.r. with 2‐substituted quinolines containing C8‐amino functionality. NMR studies indicate that hydrogen‐bonding interactions promote strong complexation between substrates and a rigid β‐turn catalyst.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom