Premium
Intracellular Self‐Assembly of Taxol Nanoparticles for Overcoming Multidrug Resistance
Author(s) -
Yuan Yue,
Wang Lin,
Du Wei,
Ding Zhanling,
Zhang Jia,
Han Tao,
An Linna,
Zhang Huafeng,
Liang Gaolin
Publication year - 2015
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201504329
Subject(s) - multiple drug resistance , intracellular , in vivo , in vitro , chemistry , pharmacology , cancer research , drug resistance , medicine , biology , biochemistry , microbiology and biotechnology
Multidrug resistance (MDR) remains the biggest challenge in treating cancers. Herein we propose the intracellular self‐assembly of nanodrugs as a new strategy for overcoming MDR. By employing a biocompatible condensation reaction, we rationally designed a taxol derivative Ac‐Arg‐Val‐Arg‐Arg‐Cys(S t Bu)‐Lys(taxol)‐2‐cyanobenzothiazole (CBT‐Taxol) which could be subjected to furin‐controlled condensation and self‐assembly of taxol nanoparticles (Taxol‐NPs). In vitro and in vivo studies indicated that, compared with taxol, CBT‐Taxol showed a 4.5‐fold or 1.5‐fold increase in anti‐MDR effects, respectively, on taxol‐resistant HCT 116 cancer cells or tumors without being toxic to the cells or the mice. Our results demonstrate that structuring protease‐susceptible agents and assembling them intracellularly into nanodrugs could be a new optimal strategy for overcoming MDR.