Premium
Transparent Electrodes Printed with Nanocrystal Inks for Flexible Smart Devices
Author(s) -
Song Jizhong,
Zeng Haibo
Publication year - 2015
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201501233
Subject(s) - inkwell , nanotechnology , materials science , electronics , wearable technology , wearable computer , electrode , flexible electronics , nanocrystal , graphene , carbon nanotube , stretchable electronics , printed electronics , computer science , electrical engineering , embedded system , engineering , composite material , chemistry
Transparent electrodes (TEs) are crucial in a wide range of modern electronic and optoelectronic devices. However, traditional TEs cannot meet the requirements of smart devices under development in unique fields, such as electronic skins, wearable electronics, robotic skins, flexible and stretchable displays, and solar cells. Emerging TEs printed with nanocrystal (NC) inks are inexpensive and compatible with solution processes, and have huge potential in flexible, stretchable, and wearable devices. Every development in ink‐based electrodes makes them more competitive for practical applications in various smart devices. Herein, we provide an overview of emergent ink‐based electrodes, such as transparent conducting oxides, metal nanowires, graphene, and carbon nanotubes, and their application in solution‐based flexible and stretchable devices.