z-logo
Premium
Photoreversible Gelation of a Triblock Copolymer in an Ionic Liquid
Author(s) -
Ueki Takeshi,
Nakamura Yutaro,
Usui Ryoji,
Kitazawa Yuzo,
So Soonyong,
Lodge Timothy P.,
Watanabe Masayoshi
Publication year - 2015
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201411526
Subject(s) - copolymer , micelle , ethylene oxide , polymer chemistry , azobenzene , ionic liquid , materials science , methacrylate , hexafluorophosphate , polymer , bistability , ionic bonding , chemical engineering , chemistry , organic chemistry , ion , catalysis , optoelectronics , aqueous solution , composite material , engineering
The reversible micellization and sol–gel transition of block copolymer solutions in an ionic liquid (IL) triggered by a photostimulus is described. The ABA triblock copolymer employed, denoted P(AzoMA‐r‐NIPAm)‐b‐PEO‐b‐P(AzoMA‐r‐NIPAm)), has a B block composed of an IL‐soluble poly(ethylene oxide) (PEO). The A block consists of a random copolymer including thermosensitive N‐isopropylacrylamide (NIPAm) units and a methacrylate with an azobenzene chromophore in the side chain (AzoMA). A phototriggered reversible unimer‐to‐micelle transition of a dilute ABA triblock copolymer (1 wt %) was observed in an IL, 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([C 4 mim]PF 6 ), at an intermediate “bistable” temperature (50 °C). The system underwent a reversible sol–gel transition cycle at the bistable temperature (53 °C), with reversible association/fragmentation of the polymer network resulting from the phototriggered self‐assembly of the ABA triblock copolymer (20 wt %) in [C 4 mim]PF 6 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom