z-logo
Premium
Highly Diastereoselective and Enantioselective Olefin Cyclopropanation Using Engineered Myoglobin‐Based Catalysts
Author(s) -
Bordeaux Melanie,
Tyagi Vikas,
Fasan Rudi
Publication year - 2015
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201409928
Subject(s) - cyclopropanation , myoglobin , enantioselective synthesis , carbene , olefin fiber , reactivity (psychology) , chemistry , combinatorial chemistry , electrophile , catalysis , aryl , organic chemistry , medicine , alkyl , alternative medicine , pathology
Using rational design, an engineered myoglobin‐based catalyst capable of catalyzing the cyclopropanation of aryl‐substituted olefins with catalytic proficiency (up to 46 800 turnovers) and excellent diastereo‐ and enantioselectivity (98–99.9 %) was developed. This transformation could be carried out in the presence of up to 20 g L −1 olefin substrate with no loss in diastereo‐ and/or enantioselectivity. Mutagenesis and mechanistic studies support a cyclopropanation mechanism mediated by an electrophilic, heme‐bound carbene species and a model is provided to rationalize the stereopreference of the protein catalyst. This work shows that myoglobin constitutes a promising and robust scaffold for the development of biocatalysts with carbene‐transfer reactivity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom