Premium
A Complete Switch of the Directional Selectivity in the Annulation of 2‐Hydroxybenzaldehydes with Alkynes
Author(s) -
Zeng Huiying,
Li ChaoJun
Publication year - 2014
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201407589
Subject(s) - annulation , selectivity , catalysis , salicylaldehyde , chemistry , alkyne , combinatorial chemistry , coumarin , rhodium , natural product , organic chemistry , stereochemistry , schiff base
Controlling reaction selectivity is an eternal pursuit for chemists working in chemical synthesis. As part of this endeavor, our group has been exploring the possibility of constructing different natural product skeletons from the same simple starting materials by using different catalytic systems. In our previous work, an isoflavanone skeleton was obtained from the annulation of a salicylaldehyde and an alkyne when a gold catalyst was employed. In this paper, it is shown that a coumarin skeleton can be efficiently obtained through an annulation reaction with the same starting materials, that is, terminal alkynes and salicylaldehydes, by simply switching to a rhodium catalyst. A plausible reaction mechanism is proposed for this new annulation based on isotopic substitution experiments.