Premium
Exceptional Isotopic‐Substitution Effect: Breakdown of Collective Proton Tunneling in Hexagonal Ice due to Partial Deuteration
Author(s) -
DrechselGrau Christof,
Marx Dominik
Publication year - 2014
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201405989
Subject(s) - proton , chemical physics , chemistry , quantum tunnelling , ab initio , ionic bonding , ab initio quantum chemistry methods , kinetic isotope effect , hydrogen , hydrogen bond , crystallography , computational chemistry , atomic physics , deuterium , molecule , ion , condensed matter physics , physics , nuclear physics , organic chemistry
Multiple proton transfer controls many chemical reactions in hydrogen‐bonded networks. However, in contrast to well‐understood single proton transfer, the mechanisms of correlated proton transfer and of correlated proton tunneling in particular have remained largely elusive. Herein, fully quantized ab initio simulations are used to investigate H/D isotopic‐substitution effects on the mechanism of the collective tunneling of six protons within proton‐ordered cyclic water hexamers that are contained in proton‐disordered ice, a prototypical hydrogen‐bonded network. At the transition state, isotopic substitution leads to a Zundel‐like complex, [HO⋅⋅⋅D⋅⋅⋅OH], which localizes ionic defects and thus inhibits perfectly correlated proton tunneling. These insights into fundamental aspects of collective proton tunneling not only rationalize recent neutron‐scattering experiments, but also stimulate investigations into multiple proton transfer in hydrogen‐bonded networks much beyond ice.