Premium
Poly(dimethylsiloxane)‐Supported Ionogels with a High Ionic Liquid Loading
Author(s) -
Horowitz Ariel I.,
Panzer Matthew J.
Publication year - 2014
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201405691
Subject(s) - ionic liquid , materials science , ionic conductivity , chemical engineering , oligomer , ionic bonding , formic acid , modulus , elastic modulus , polymer chemistry , composite material , ion , organic chemistry , chemistry , electrode , engineering , electrolyte , catalysis
Abstract The immiscibility of poly(dimethylsiloxane) (PDMS) and ionic liquids (ILs) was overcome to create PDMS‐supported IL gels (ionogels) with IL loadings of up to 80 % by mass through a simple sol–gel reaction at room temperature. By stirring a mixture of a functionalized PDMS oligomer, formic acid, and an IL (or lithium‐in‐IL solution), a resin was formed that could be cast to create a freestanding, flexible ionogel. PDMS‐supported ionogels exhibited favorable ionic conductivity (ca. 3 mS cm −1 ) and excellent mechanical behavior (elastic modulus: ca. 60 kPa; fatigue life: >5000 cycles; mechanically stable at temperatures up to 200 °C). The activation energy of ionic conductivity was shown to be nearly identical for the ionogel and the neat IL, in contrast to ionogel systems wherein the scaffold material is miscible with the IL. This similarity indicates that IL/scaffold chemical interactions are key to the understanding of ionogel electrical performance, especially at elevated temperatures.