Premium
Storage of Electrical Information in Metal–Organic‐Framework Memristors
Author(s) -
Yoon Seok Min,
Warren Scott C.,
Grzybowski Bartosz A.
Publication year - 2014
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201309642
Subject(s) - memristor , nanoporous , electrolyte , materials science , resistive random access memory , anode , nanotechnology , ionic bonding , electrode , ionic conductivity , nanometre , optoelectronics , ion , chemistry , electrical engineering , engineering , organic chemistry , composite material
Single crystals of a cyclodextrin‐based metal–organic framework (MOF) infused with an ionic electrolyte and flanked by silver electrodes act as memristors. They can be electrically switched between low and high conductivity states that persist even in the absence of an applied voltage. In this way, these small blocks of nanoporous sugar function as a non‐volatile RRAM memory elements that can be repeatedly read, erased, and re‐written. These properties derive from ionic current within the MOF and the deposition of nanometer‐thin passivating layers at the anode flanking the MOF crystal. The observed phenomena are crucially dependent on the sub‐nanometer widths of the channels in the MOF, allowing the passage of only smaller ions. Conversely, with the electrolyte present but no MOF, there are no memristance or memory effects.