z-logo
Premium
Carbon Nanotubes/Heteroatom‐Doped Carbon Core–Sheath Nanostructures as Highly Active, Metal‐Free Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells
Author(s) -
Sa Young Jin,
Park Chiyoung,
Jeong Hu Young,
Park SeokHee,
Lee Zonghoon,
Kim Kyoung Taek,
Park GuGon,
Joo Sang Hoon
Publication year - 2014
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201307203
Subject(s) - heteroatom , carbon nanotube , materials science , catalysis , nanostructure , nanocomposite , graphene , nanotechnology , carbonization , chemical engineering , carbon fibers , chemistry , composite number , composite material , organic chemistry , scanning electron microscope , ring (chemistry) , engineering
A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom‐doped carbon (CNT/HDC) core–sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom‐containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom‐containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom‐doped nanocarbon catalysts in terms of half‐wave potential and kinetic current density. The four‐electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long‐term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here