Premium
Stable Cyclic Carbenes and Related Species beyond Diaminocarbenes
Author(s) -
Melaimi Mohand,
Soleilhavoup Michèle,
Bertrand Guy
Publication year - 2010
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201000165
Subject(s) - homogeneous , catalysis , ligand (biochemistry) , homogeneous catalysis , chemistry , organometallic chemistry , metal , characterization (materials science) , combinatorial chemistry , chemical physics , nanotechnology , materials science , organic chemistry , physics , statistical physics , receptor , biochemistry
The success of homogeneous catalysis can be attributed largely to the development of a diverse range of ligand frameworks that have been used to tune the behavior of various systems. Spectacular results in this area have been achieved using cyclic diaminocarbenes (NHCs) as a result of their strong σ‐donor properties. Although it is possible to cursorily tune the structure of NHCs, any diversity is still far from matching their phosphorus‐based counterparts, which is one of the great strengths of the latter. A variety of stable acyclic carbenes are known, but they are either reluctant to bind metals or they give rise to fragile metal complexes. During the last five years, new types of stable cyclic carbenes, as well as related carbon‐based ligands (which are not NHCs), and which feature even stronger σ‐donor properties have been developed. Their synthesis and characterization as well as the stability, electronic properties, coordination behavior, and catalytic activity of the ensuing complexes are discussed, and comparisons with their NHC cousins are made.