Premium
Synthesis of 11 C, 18 F, 15 O, and 13 N Radiolabels for Positron Emission Tomography
Author(s) -
Miller Philip W.,
Long Nicholas J.,
Vilar Ramon,
Gee Antony D.
Publication year - 2008
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.200800222
Subject(s) - positron emission tomography , positron , molecular imaging , nuclear medicine , brain positron emission tomography , positron emission , pet imaging , magnetic resonance imaging , preclinical imaging , physics , nuclear magnetic resonance , medicine , nuclear physics , radiology , in vivo , biology , electron , microbiology and biotechnology
Positron emission tomography (PET) is a powerful and rapidly developing area of molecular imaging that is used to study and visualize human physiology by the detection of positron‐emitting radiopharmaceuticals. Information about metabolism, receptor/enzyme function, and biochemical mechanisms in living tissue can be obtained directly from PET experiments. Unlike magnetic resonance imaging (MRI) or computerized tomography (CT), which mainly provide detailed anatomical images, PET can measure chemical changes that occur before macroscopic anatomical signs of a disease are observed. PET is emerging as a revolutionary method for measuring body function and tailoring disease treatment in living subjects. The development of synthetic strategies for the synthesis of new positron‐emitting molecules is, however, not trivial. This Review highlights key aspects of the synthesis of PET radiotracers with the short‐lived positron‐emitting radionuclides 11 C, 18 F, 15 O, and 13 N, with emphasis on the most recent strategies.