Premium
Noncoordinating Anions—Fact or Fiction? A Survey of Likely Candidates
Author(s) -
Krossing Ingo,
Raabe Ines
Publication year - 2004
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.200300620
Subject(s) - cationic polymerization , ion , decomposition , quantum chemical , computer science , solubility , materials science , chemistry , chemical physics , polymer chemistry , organic chemistry , molecule
Is there anything resembling a truly noncoordinating anion? Would it not be great to be able to prepare any crazy, beautiful, or simply useful cationic species that one has in mind, or has detected by mass spectroscopy? In condensed phases the target cation has to be partnered with a suitable counteranion. This is the moment when difficulties arise and many wonderful ideas end in the sink owing to coordination or decomposition of the anion. However, maybe these counteranion problems can be overcome by one of the new weakly coordinating anions (WCAs). Herein is an overview on the available candidates in the quest for the least coordinating anion and a summary of new applications, available starting materials, and general strategies to introduce a WCA into a system. Some of the unusual properties of WCA salts such as high solubility in low dielectric media, pseudo gas‐phase conditions in condensed phases, and the stabilization of weakly bound and low‐charged complexes are rationalized on thermodynamic grounds. Limits of the WCAs, that is, anion coordination and decomposition, are shown and a quantum chemical analysis of all types of WCAs is presented which allows the choice of a particular WCA to be based on quantative data from a wide range of different anions.