Premium
Nanotechnology with Soft Materials
Author(s) -
Hamley I. W.
Publication year - 2003
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.200200546
Subject(s) - nanotechnology , nanostructure , materials science , biopolymer , nanoparticle , soft materials , applications of nanotechnology , polymer , composite material
Abstract Nature exploits self‐organization of soft materials in many ways, to produce cell membranes, biopolymer fibers and viruses, to name just three. Mankind is now able to design materials at the nanoscale, whether through atom‐by‐atom or molecule‐by‐molecule methods (top‐down) or through self‐organization (bottom‐up). The latter method encompasses soft nanotechnology. Self‐organization of soft materials can be exploited to create a panoply of nanostructures for diverse applications. The richness of structures results from the weak ordering because of noncovalent interactions. Thus, thermal energy is important as it enables transitions between phases with differing degrees of order. The power of self‐organization may be harnessed most usefully in a number of nanotechnology applications, which include the preparation of nanoparticles, the templating of nanostructures, nanomotor design, the exploitation of biomineralization, and the development of functionalized delivery vectors.