Premium
Polymeric Antitumor Agents on a Molecular and on a Cellular Level?
Author(s) -
Gros Leo,
Ringsdorf Helmut,
Schupp Hans
Publication year - 1981
Publication title -
angewandte chemie international edition in english
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 0570-0833
DOI - 10.1002/anie.198103051
Subject(s) - adventure , macromolecule , nanotechnology , chemistry , immune system , cancer therapy , computational biology , biophysics , computer science , biology , cancer , biochemistry , materials science , immunology , artificial intelligence , genetics
“Chemistry has become a mature science, with all the advantages and handicaps of maturity: harvest is abundant, but many people think future and adventure are to be found elsewhere” [1a] . This holds true—in 1981, the year of Hermann Staudinger's 100th birthday—for macromolecular chemistry, too. Where can the polymer chemists seek adventures? Unsolved problems in neighboring fields like medicine and molecular biology attract his zeal. Cancer chemotherapy is such a field. Can the polymer chemist help to solve its problems? Polymers may be pharmacologically active as such. If used as carriers, they may, due to their intrinsic properties, influence body distribution, excretion or cell uptake of the pharmaca they carry. Hence, there is a chance for new ways in therapy, including affinity chemotherapy using synthetic macromolecules. Our own body has a perfect biological system for affinity therapy: immune response to infection selectively attacks foreign cells, It is fascinating to observe what the immune system does to a tumor cell which could not escape immune surveillance (cf. Fig. 14). Can these specific cell‐cell interactions be mimicked? What do we have to learn for an experimental approach to this adventure? Stable membrane and cell models can be synthesized, a first step towards this goal. Macromolecular chemistry is far from being able to offer satisfying solutions for a specific tumor therapy; striving for it, polymer chemists can learn lots of things. In order to do so, they will have to enter neighboring fields and they will have to be willing and able to cooperate.