z-logo
Premium
Mechanistic Organic Photochemistry
Author(s) -
Zimmerman H. E.
Publication year - 1969
Publication title -
angewandte chemie international edition in english
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 0570-0833
DOI - 10.1002/anie.196900011
Subject(s) - excited state , singlet fission , chemistry , molecule , singlet state , potential energy , chemical physics , computational chemistry , photochemistry , atomic physics , physics , organic chemistry
Organic photochemical reactions can be understood as transformations of the electronically excited states of the reactant molecules. By considering Lewis structure or molecular orbital representations of these excited states it is possible to outline the several possible reactions available in the case of a given reactant. A number of different types of photochemical transformations are now reasonably well understood. In these cases one finds the same common controlling feature, namely the tendency for an excited state species to follow mechanistic pathways of minimum energy and the requirement for continuous electron redistribution in following these pathways. These preferred transformations can often be selected by inspection of relative bond orders for different types of bonding, by comparison of the potential energy surfaces available to the excited state molecules, and by use of correlation diagrams. The reactions derive from both singlet and triplet states, and one of the more reliable methods now available for identifying excited states reacting is termed the “fingerprint method”. Examples of the author's mechanistic approach are given both for ketone and for hydrocarbon photochemistry.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here