z-logo
Premium
A Highly Selective Supramolecule Array Membrane Made of Zero‐Dimensional Molecules for Gas Separation
Author(s) -
Zhao Meng,
Ban Yujie,
Yang Kun,
Zhou Yingwu,
Cao Na,
Wang Yuecheng,
Yang Weishen
Publication year - 2021
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202108185
Subject(s) - membrane , intermolecular force , chemistry , molecule , gas separation , molecular sieve , yield (engineering) , solvent , chemical engineering , chemical physics , nanotechnology , materials science , organic chemistry , adsorption , biochemistry , engineering , metallurgy
We orderly assembled zero‐dimensional 2‐methylimidazole (mim) molecules into unprecedented supramolecule array membranes (SAMs) through solvent‐free vapor processing, realizing the intermolecular spacing of mim at ca. 0.30 nm available as size‐sieving channels for distinguishing the tiny difference between H 2 (kinetic diameter: 0.289 nm) and CO 2 (kinetic diameter: 0.33 nm). The highly oriented and dense membranes yield a separation factor above 3600 for equimolar H 2 /CO 2 mixtures, which is one order of magnitude higher than those of the state‐of‐the‐art membranes defining 2017’s upper bound for H 2 /CO 2 separation. These SAMs define a new benchmark for molecular sieve membranes and are of paramount importance to precombustion carbon capture. Given the range of supramolecules, we anticipate SAMs with variable intermolecular channels could be applied in diversified separations that are prevalent in chemical processes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here