Premium
Phase Engineering of Cesium Manganese Bromides Nanocrystals with Color‐Tunable Emission
Author(s) -
Kong Qingkun,
Yang Bin,
Chen Junsheng,
Zhang Ruiling,
Liu Siping,
Zheng Daoyuan,
Zhang Hongling,
Liu Qingtong,
Wang Yiying,
Han Keli
Publication year - 2021
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202105413
Subject(s) - nanocrystal , materials science , manganese , caesium , annealing (glass) , optoelectronics , phase (matter) , phase transition , photoluminescence , red color , optics , nanotechnology , chemistry , inorganic chemistry , condensed matter physics , metallurgy , composite material , physics , organic chemistry
For display applications, it is highly desirable to obtain tunable red/green/blue emission. However, lead‐free perovskite nanocrystals (NCs) generally exhibit broadband emission with poor color purity. Herein, we developed a unique phase transition strategy to engineer the emission color of lead‐free cesium manganese bromides NCs and we can achieve a tunable red/green/blue emission with high color purity in these NCs. Such phase transition can be triggered by isopropanol: from one dimensional (1D) CsMnBr 3 NCs (red‐color emission) to zero dimensional (0D) Cs 3 MnBr 5 NCs (green‐color emission). Furthermore, in a humid environment both 1D CsMnBr 3 NCs and 0D Cs 3 MnBr 5 NCs can be transformed into 0D Cs 2 MnBr 4 ⋅2 H 2 O NCs (blue‐color emission). Cs 2 MnBr 4 ⋅2 H 2 O NCs could inversely transform into the mixture of CsMnBr 3 and Cs 3 MnBr 5 phase during the thermal annealing dehydration step. Our work highlights the tunable optical properties in single component NCs via phase engineering and provides a new avenue for future endeavors in light‐emitting devices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom