z-logo
Premium
Periodicity in the Electrochemical Dissolution of Transition Metals
Author(s) -
Speck Florian D.,
Zagalskaya Alexandra,
Alexandrov Vitaly,
Cherevko Serhiy
Publication year - 2021
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202100337
Subject(s) - dissolution , transition metal , electrocatalyst , oxide , electrochemistry , inductively coupled plasma mass spectrometry , metal , inorganic chemistry , chemistry , corrosion , adsorption , materials science , catalysis , chemical engineering , nanotechnology , chemical physics , mass spectrometry , metallurgy , electrode , organic chemistry , chromatography , engineering
Extensive research efforts are currently dedicated to the search for new electrocatalyst materials in which expensive and rare noble metals are replaced with cheaper and more abundant transition metals. Recently, numerous alloys, oxides, and composites with such metals have been identified as highly active electrocatalysts through the use of high‐throughput screening methods with the help of activity descriptors. Up to this point, stability has lacked such descriptors. Hence, we elucidate the role of intrinsic metal/oxide properties on the corrosion behavior of representative 3d, 4d, and 5d transition metals. Electrochemical dissolution of nine transition metals is quantified using online inductively coupled plasma mass spectrometry (ICP‐MS). Based on the obtained dissolution data in alkaline and acidic media, we establish clear periodic correlations between the amount of dissolved metal, the cohesive energy of the metal atoms ( E coh ), and the energy of oxygen adsorption on the metal (Δ H O,ads ). Such correlations can support the knowledge‐driven search for more stable electrocatalysts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here