Premium
GlycoBODIPYs: Sugars Serving as a Natural Stock for Water‐soluble Fluorescent Probes of Complex Chiral Morphology
Author(s) -
Patalag Lukas J.,
Ahadi Somayeh,
Lashchuk Olesia,
Jones Peter G.,
Ebbinghaus Simon,
Werz Daniel B.
Publication year - 2021
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202016764
Subject(s) - glycoconjugate , fluorescence , chemistry , combinatorial chemistry , bodipy , knoevenagel condensation , solvent , sugar , organic chemistry , biochemistry , catalysis , physics , quantum mechanics
Abstract A range of unprocessed, reducing sugar substrates (mono‐, di‐, and trisaccharides) is shown to take part in a straightforward four‐step synthetic route to water‐soluble, uncharged BODIPY derivatives with unimpaired chiral integrity and high fluorescence efficiency. A wide compatibility with several postfunctionalizations is demonstrated, thus suggesting a universal utility of the multifunctional glycoconjugates, which we call GlycoBODIPYs. Knoevenagel condensations are able to promote a red‐shift in the spectra, thereby furnishing strongly fluorescent red and far‐red glycoconjugates of high hydrophilicity. The synthetic outcome was studied by X‐ray crystallography and by comprehensive photophysical investigations in several solvent systems. Furthermore, cell experiments illustrate efficient cell uptake and demonstrate differential cell targeting as a function of the integrated chiral information.