Premium
Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low‐Cost Antisolvents
Author(s) -
Hao Junnan,
Yuan Libei,
Ye Chao,
Chao Dongliang,
Davey Kenneth,
Guo Zaiping,
Qiao ShiZhang
Publication year - 2021
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202016531
Subject(s) - solvation , electrolyte , chemistry , electrochemistry , chemical engineering , zinc , crystallization , aqueous solution , polyaniline , methanol , inorganic chemistry , electrode , molecule , polymer , organic chemistry , polymerization , engineering
Antisolvent addition has been widely studied in crystallization in the pharmaceutical industries by breaking the solvation balance of the original solution. Here we report a similar antisolvent strategy to boost Zn reversibility via regulation of the electrolyte on a molecular level. By adding for example methanol into ZnSO 4 electrolyte, the free water and coordinated water in Zn 2+ solvation sheath gradually interact with the antisolvent, which minimizes water activity and weakens Zn 2+ solvation. Concomitantly, dendrite‐free Zn deposition occurs via change in the deposition orientation, as evidenced by in situ optical microscopy. Zn reversibility is significantly boosted in antisolvent electrolyte of 50 % methanol by volume (Anti‐M‐50 %) even under harsh environments of −20 °C and 60 °C. Additionally, the suppressed side reactions and dendrite‐free Zn plating/stripping in Anti‐M‐50 % electrolyte significantly enhance performance of Zn/polyaniline coin and pouch cells. We demonstrate this low‐cost strategy can be readily generalized to other solvents, indicating its practical universality. Results will be of immediate interest and benefit to a range of researchers in electrochemistry and energy storage.