z-logo
Premium
A C‐S‐C Linkage‐Triggered Ultrahigh Nitrogen‐Doped Carbon and the Identification of Active Site in Triiodide Reduction
Author(s) -
Chang Jiangwei,
Yu Chang,
Song Xuedan,
Tan Xinyi,
Ding Yiwang,
Zhao Zongbin,
Qiu Jieshan
Publication year - 2021
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202012141
Subject(s) - dopant , pyrolysis , carbon fibers , doping , carbonization , adsorption , chemistry , nitrogen , inorganic chemistry , materials science , organic chemistry , optoelectronics , composite number , composite material
An efficient chemical synthesis route, with an aim of reaching an ultrahigh nitrogen (N)‐doping level in carbon materials can provide a platform where the type and amount of N dopant can be tuned over a wide range. We propose a C‐S‐C linkage‐triggered confined‐pyrolysis strategy for the high‐efficiency in situ N‐doping into carbon matrix and an ultrahigh doping level up to 13.5 at %, which is close to the theoretical upper limit (15.2 at %) is realized at a high carbonization temperature of 1000 °C. The pyridinic N is dominant with a maximum percent of 48.7 %. By using I 3 − reduction as an example, the resultant NCM‐5 exhibits the best activity with a power conversion efficiency of 8.77 %. A pyridinic N site‐dependent activity is demonstrated in which the amount of active sites increases with the increase of pyridinic N, and the carbon atom adjacent to electron‐withdrawing pyridinic N at the armchair edge acts as the most favorable site for the adsorption of I 2 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom