z-logo
Premium
Experimental and Computational Investigations of the Reactions between α,β‐Unsaturated Lactones and 1,3‐Dienes by Cooperative Lewis Acid/Brønsted Acid Catalysis
Author(s) -
Weber Anja,
Breugst Martin,
Pietruszka Jörg
Publication year - 2020
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202008365
Subject(s) - chemistry , lewis acids and bases , isocoumarin , stepwise reaction , trimethylsilyl , catalysis , reaction mechanism , brønsted–lowry acid–base theory , diene , lewis acid catalysis , lactone , organic chemistry , medicinal chemistry , kinetics , order of reaction , physics , natural rubber , quantum mechanics , reaction rate constant
The reactions of α,β‐unsaturated δ‐lactones with activated dienes such as 1,3‐dimethoxy‐1‐[(trimethylsilyl)oxy]‐1,3‐butadiene (Brassard's diene) are barely known in literature and show high potential for the synthesis of isocoumarin moieties. An in‐depth investigation of this reaction proved a stepwise mechanism via the vinylogous Michael‐products. Subsequent cyclisation and oxidation by LHMDS and DDQ, respectively, provided six mellein derivatives (30–84 %) and four angelicoin derivatives (40–78 %) over three steps. DFT‐calculations provide insights into the reaction mechanism and support the theory of a stepwise reaction.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom