z-logo
Premium
One‐Step Ring Opening Metathesis Block‐Like Copolymers and their Compositional Analysis by a Novel Retardation Technique
Author(s) -
Yasir Mohammad,
Liu Peng,
Markwart Jens C.,
Suraeva Oksana,
Wurm Frederik R.,
Smart Jansie,
Lattuada Marco,
Kilbinger Andreas F. M.
Publication year - 2020
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202005366
Subject(s) - copolymer , monomer , reactivity (psychology) , steric effects , polymerization , polymer chemistry , metathesis , chemistry , chain propagation , materials science , polymer , organic chemistry , medicine , alternative medicine , pathology
Using a one‐step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers ( M1 – M5 ) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock‐like copolymers using Grubbs’ first ( G1 ) or third generation catalyst ( G3 ). The monomer consumption was followed by 1 H NMR spectroscopy, which revealed vastly different reactivity ratios for M1 and M2 . In the case of M1 and M3 , we observed the highest difference in reactivity ratios ( r 1 =324 and r 2 =0.003) ever reported for a copolymerization method. A triblock‐like copolymer was also synthesized using G3 by first allowing the consumption of the mixture of M1 and M2 and then adding M1 again. In addition, in order to measure the fast reaction rates of the G3 catalyst with M1 , we report a novel retardation technique based on an unusual reversible G3 Fischer‐carbene to G3 benzylidene/alkylidene transformation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here