z-logo
Premium
Quantitative Chirality and Concentration Sensing of Alcohols, Diols, Hydroxy Acids, Amines and Amino Alcohols using Chlorophosphite Sensors in a Relay Assay
Author(s) -
Thanzeel F. Yushra,
Balaraman Kaluvu,
Wolf Christian
Publication year - 2020
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202005324
Subject(s) - chemistry , chirality (physics) , aniline , enantiomer , combinatorial chemistry , chemiluminescence , amino acid , fluorescence , organic chemistry , biochemistry , physics , chiral symmetry breaking , quantum mechanics , nambu–jona lasinio model , quark
Analytical methods that allow simultaneous determination of the concentration and enantiomeric composition of small sample amounts and are also compatible with high‐throughput multi‐well plate technology have received increasing attention in recent years. We now introduce a new class of broadly useful small‐molecule probes and a relay sensing strategy that together accomplish these tasks with five classes of compounds including the challenging group of mono‐alcohols—a scope that stands out among previously reported UV, fluorescence, and CD assays. Several chlorophosphite probes and aniline indicators have been evaluated and used for on‐the‐fly CD/UV sensing following a continuous workflow. The wide application range of the readily available sensors is highlighted with almost 30 alcohols, diols, hydroxy acids, amines and amino alcohols, and the accuracy of the stereochemical analysis is showcased with samples covering a wide range of concentrations and enantiomeric ratios.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here