Premium
Magnetic Anisotropy in Divalent Lanthanide Compounds
Author(s) -
Zhang Weibing,
Muhtadi Almas,
Iwahara Naoya,
Ungur Liviu,
Chibotaru Liviu F.
Publication year - 2020
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202003399
Subject(s) - lanthanide , dysprosium , magnetization , terbium , ab initio quantum chemistry methods , magnetic anisotropy , anisotropy , chemistry , holmium , ab initio , molecule , crystallography , divalent , magnet , materials science , condensed matter physics , inorganic chemistry , ion , magnetic field , physics , laser , organic chemistry , quantum mechanics , optics
Complexes of trivalent lanthanides (Ln) are known to possess strong magnetic anisotropy, which enables them to be efficient single‐molecule magnets. High‐level ab initio calculations are reported for [LnO] (where Ln is terbium (Tb), dysprosium (Dy), or holmium (Ho)), which show that divalent lanthanides can exhibit equally strong magnetic anisotropy and magnetization blocking barriers. In particular, detailed calculations predict a multilevel magnetization blocking barrier exceeding 3000 K for a [DyO] complex deposited on a hexagonal boron nitride (h‐BN) surface, bringing the expected performance of single‐molecule magnets to a qualitatively new level compared to the current state‐of‐the art complexes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom