Premium
Super‐Soft and Super‐Elastic DNA Robot with Magnetically Driven Navigational Locomotion for Cell Delivery in Confined Space
Author(s) -
Tang Jianpu,
Yao Chi,
Gu Zi,
Jung Sunghwan,
Luo Dan,
Yang Dayong
Publication year - 2020
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201913549
Subject(s) - robot , soft robotics , dna , nanotechnology , materials science , computer science , biological system , artificial intelligence , chemistry , biology , biochemistry
Soft organisms such as earthworms can access confined, narrow spaces, inspiring scientists to fabricate soft robots for in vivo manipulation of cells or tissues and minimally invasive surgery. We report a super‐soft and super‐elastic magnetic DNA hydrogel‐based soft robot (DNA robot), which presents a shape‐adaptive property and enables magnetically driven navigational locomotion in confined and unstructured space. The DNA hydrogel is designed with a combinational dynamic and permanent crosslinking network through chain entanglement and DNA hybridization, resulting in shear‐thinning and cyclic strain properties. DNA robot completes a series of complex magnetically driven navigational locomotion such as passing through narrow channels and pipes, entering grooves and itinerating in a maze by adapting and recovering its shape. DNA robot successfully works as a vehicle to deliver cells in confined space by virtue of the 3D porous networked structure and great biocompatibility.