Premium
Biosynthesis of the N–N‐Bond‐Containing Compound l ‐Alanosine
Author(s) -
Wang Menghua,
Niikura Haruka,
He HaiYan,
DanielIvad Phillip,
Ryan Katherine S.
Publication year - 2020
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201913458
Subject(s) - chemistry , biosynthesis , aspartic acid , biochemistry , stereochemistry , amino acid , enzyme , in vivo , biology , genetics
The formation of a N−N bond is a unique biochemical transformation, and nature employs diverse biosynthetic strategies to activate nitrogen for bond formation. Among molecules that contain a N−N bond, biosynthetic routes to diazeniumdiolates remain enigmatic. We here report the biosynthetic pathway for the diazeniumdiolate‐containing amino acid l ‐alanosine. Our work reveals that the two nitrogen atoms in the diazeniumdiolate of l ‐alanosine arise from glutamic acid and aspartic acid, and we clarify the early steps of the biosynthetic pathway by using both in vitro and in vivo approaches. Our work demonstrates a peptidyl‐carrier‐protein‐based mechanism for activation of the precursor l ‐diaminopropionate, and we also show that nitric oxide can participate in non‐enzymatic diazeniumdiolate formation. Furthermore, we demonstrate that the gene alnA , which encodes a fusion protein with an N‐terminal cupin domain and a C‐terminal AraC‐like DNA‐binding domain, is required for alanosine biosynthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom