z-logo
Premium
Separation of Bromoalkanes Isomers by Nonporous Adaptive Crystals of Leaning Pillar[6]arene
Author(s) -
Wu JiaRui,
Li Bao,
Yang YingWei
Publication year - 2020
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201911965
Subject(s) - selectivity , pillar , porous medium , chemistry , petrochemical , adsorption , structural isomer , calixarene , porosity , chemical engineering , organic chemistry , molecule , catalysis , structural engineering , engineering
Haloalkanes are important chemicals in synthetic chemistry and petrochemical industry, but the separation of their isomers is a big hurdle. Herein, we report a facile energy‐efficient adsorptive separation strategy using a new class of nonporous adaptive crystals based on leaning pillar[6]arene. Desolvated perethylated leaning pillar[6]arene crystals (EtLP6) with interesting nonporous character show a preference for 1‐bromoalkane isomers over 2‐bromoalkane isomers. EtLP6 is capable of separating 1‐bromopropane, 1‐bromobutane, and 1‐bromopentane from the corresponding 1:1 (v/v) mixtures of 1/2‐positional isomers with purities from 89.6 % to 96.3 % in only one adsorption cycle. The selectivity is endowed by the different host–guest binding modes and different stabilities of EtLP6 crystalloids loaded with 1‐ and 2‐positional isomers. Significantly, the guest–adsorbed assemblies are highly stable at room temperature and EtLP6 can be reused many times without any decrease in performance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here